Planungsblatt

AquaVip-Durchfluss-Trinkwassererwärmer (DTE)

Inhalt

7	Aus	stattung	5
2	Tecl	nnische Daten	7
	2.1	Technische Daten AquaVip-Durchfluss-Trinkwassererwärmer (DTE)	7
	2.2	AquaVip DTE/UFC Planer	8
	2.3	Empfohlene Rohrleitungslängen Heizungsseite	9
3	Eins	atzbereiche und Anlagengrößen	10
4	Ben	ötigtes Zubehör	11
5	Bau	gruppenübersicht	12
6	Info	rmationen zum Energiespeicher	13
7	Betı	riebszustände	14
	7.1	Zirkulationsbetrieb ohne Entnahme	14
	7.2	Zirkulationsbetrieb und kleine Entnahmen	14
	7.3	Größere Entnahmen bis Volllast	15
	7.4	Kombination mit AquaVip-Ultrafiltrationsmodul (UFC) für abgesenkten Betrieb	15
8	Diag	gramme	16
9	Plat	zbedarf und Abstände	18

1 Ausstattung

- für die energieeffiziente und hygieneoptimierte Trinkwassererwährmung
- ausgestattet mit AquaVip-Controller Modell 5841.10
- optional zusätzlich bestellbar AquaVip-Ultrafiltrationsmodul (UFC) Modell 5843.1, Easytop-Dämmschale Modell 2275.90, Easytop-Kugelhahn Modell 2275.1, 2275.6
- Edelstahl, EPP
- Spannungsversorgung für externe Zirkulationspumpe zum Ein-/Ausschalten, der AquaVip-Controller ermöglicht den Anschluss weiterer AquaVip-Produkte (z. B. Spülstation, Sensoren, elektronische Zirkulationsregulierventile oder Waschtisch-Armatur)
- Ethernet (RJ45)
- bodenstehend, werkseitig vormontiert inkl. Verkabelung von Sensoren, geeignet für Heizungswasser gemäß VDI 2035 und alle Trinkwässer gemäß Trinkwasserverordnung, Konfiguration über Ethernet-Schnittstelle mittels webbasierter Software, Erstellung eines Raumplans mit Darstellung aller im AquaVip Solutions eingebundenen Geräte, Protokollierung und Speicherung aller Betriebsdaten.
- Stahlrahmen lackiert, EPP-Verkleidung (WLG 040), interne Verrohrung mit Rohrleitungen aus Edelstahl 1.4401 und Press-verbindersystem Viega Sanpress mit DVGW Zulassung DW-8501AP3032 und Sanpress Inox mit DVWG Zulassung DW-8501BL551
- Zwei in Reihe geschaltete Gegenstrom-Plattenwärmeübertrager edelstahlgelötet in thermisch getrennten Temperaturzonen (oberer PWÜ zur Ansteuerung bei kleinen Entnahmen und zum Ausgleich der Zirkulationsverluste) / unterer PWÜ bei großen Entnahmen)
- heizungseitige Rücklaufregelung für gleichzeitigen Betrieb beider Heizungsrückläufe mit unterschiedlichen Temperaturen zur energieeffizienten Speicherschichtung
- zwei separat angesteuerte Umwälzpumpen
- Möglichkeit der thermischen Desinfektion nach DVGW W 551
- Volumenstrom-, Druck- und Temperatursensoren
- integrierter AquaVip-Controller mit Zugang zum AquaVip Solutions zum Managen der Trinwasser-Installation und Erhalt der Trinkwassergüte
- LED-Statusanzeige

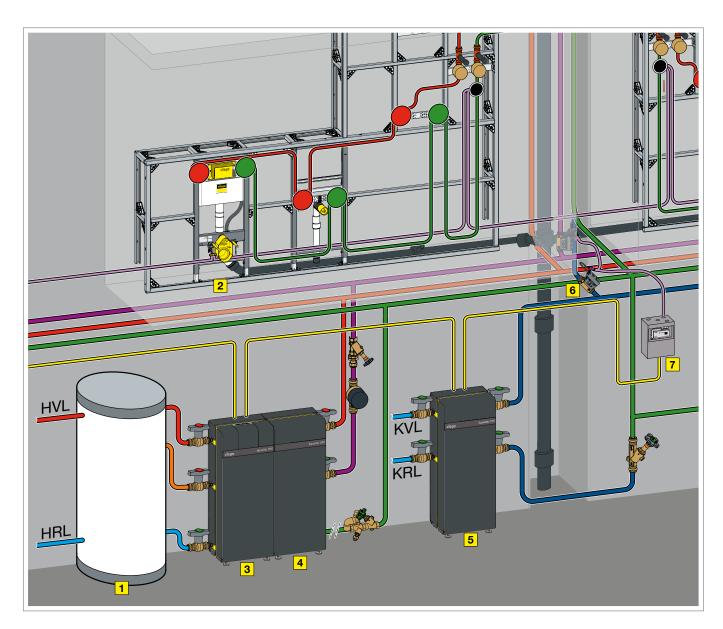

Abb. 1: AquaVip DTE 40

Abb. 2: AquaVip DTE 40 in Kombination mit AquaVip UFC 40

	DTE 40	DTE 70	DTE 100
Modell	5842.1	5842.1	5842.1
Artikel	797 416	797 010	797 027

	UFC 40	UFC 70	UFC 100
Modell	5843.1	5843.1	5843.1
Artikel	797 034	797 041	797 553

1	Energiespeicher	5	AquaVip-Durchfluss-Trinkwasserkühler (DTK)
2	Prevista Dry-WC-Element mit integrierter AquaVip-Spülstation	6	AquaVip-Zirkulationsregulierventil elektronisch
3	AquaVip-Durchfluss-Trinkwassererwärmer (DTE)	7	AquaVip-Controller
4	AquaVip-Ultrafiltrationsmodul (UFC)		

Abb. 3: Übersicht AquaVip-System

Folgende Komponenten sind im Lieferumang nicht enthalten und müssen gesondert bestellt werden:

Zirkulationspumpe
Sicheheitsgruppe
Kugehähne und Dämmschale

2 Technische Daten

2.1 Technische Daten AquaVip-Durchfluss-Trinkwassererwärmer (DTE)

Parameter	DTE 40	DTE 70	DTE 100	
Anschlüsse	2xEthernet (RJ45)			
Auslegungspunkt 1 Heizungsvorlauf / Trinkwasser warm / Trinkwasser kalt	70/60/10 °C			
Auslegungspunkt 2 Heizungsvorlauf / Trinkwasser warm / Trinkwasser kalt	75/60/10 °C			
Abmessungen BxHxT in mm	550x1445x440	1100x1445x440	1100x1445x440	
Betriebsdruck	max. 1 Mpa			
Kommunikationsprotokoll	CAN-BUS			
Leergewicht	44 kg	100 kg	105 kg	
Leistungsaufnahmen max.	220 W	460 W	460 W	
Netzspannung	230V AC/50-60 Hz			
Relative Luftfeuchtigkeit	max. 75 %			
Schutzart Elektrobox	IP 22			
Umgebungstemperatur	5–50 °C			
Werkstoff Plattenwärmeübertrager	Edelstahl 1.4404, e	edelstahlgelötet		
Trinkwasserseite	,			
Anschlussleitung Trinkwasser kalt (PWC),	G1	G1¾	G1¾	
Überwurfmutter (flachdichtend)				
Anschlussleitung Trinkwasser warm (PWH), Überwurfmutter (flachdichtend)	G1	G1¾	G1¾	
Anschlussleitung Zirkulation (PWH-C), Überwurfmutter (flachdichtend)	G1	G1½	G1½	
Durchflussmedien Sekundärseite	Trinkwasser nach TrinkwV	Trinkwasser nach TrinkwV	Trinkwasser nach TrinkwV	
Druckverlust bei Auslegungspunkt 1	630 hPa	750 hPa	900 hPa	
Druckverlust	3,2 m ³ /h	6,3 m ³ /h	7,3 m ³ /h	
max. Leistung Trinkwasser Warm (PWH) bei Auslegungspunkt 1	147 kW	317 kW	400 kW	
max. Temperatur Trinkwasser warm	80°C	80°C	80°C	
max. Volumenstrom Trinkwasser Warm (PWH) bei Auslegungspunkt 1	42 l/min	91 l/min	115 l/min	
max. Volumenstrom Trinkwasser Warm (PWH) bei Auslegungspunkt 2	47 l/min	105 l/min	128 l/min	
max. zulässiger Volumenstrom *	60 l/min	120 l/min	140 l/min*	
min. Volumenstrom Trinkwasser warm (PWH) bei min. Zirkulati- onsvolumenstrom	2,5 l/min	4 l/min	4 I/min	
min. Zirkulationsvolumenstrom	3 l/min	5,7 l/min	10 l/min	
max. Zirkulationsvolumenstrom	27 l/min	40 l/min	60 I/min	
NL-Zahl (4708) bei Auslegungspunkt 1	19	70	99	
NL-Zahl (4708) bei Auslegungspunkt 2	23	86	116	
Wasserhärte max. **	14° dH	14° dH	14° dH	
Heizungsseite	1			
Anschlussleitung mittlerer Rücklauf, Überwurfmutter (flachdichtend)	G1	G1¾	G1¾	
Anschlussleitung unterer Rücklauf , Überwurfmutter (flachdichtend)	G1	G1¾	G1¾	
Anschlussleitung Vorlauf , Überwurfmutter (flachdichtend)	G1	G1¾	G1¾	
Durchflussmedien Primärseite	Heizwasser VDI 2035	Heizwasser VDI 2035	Heizwasser VDI 2035	
Max. zulässige Druckdifferenz zwischen VL und RL für Funktion Rücklaufeinschichtung (Auslegung RL-Leitungen identisch zueinander)	VL max. 50 hPa üb	1		
	150 hPa	150 hPa	150 hPa	

Parameter	DTE 40	DTE 70	DTE 100
max. Volumenstrom	41 l/min	94 l/min	117 l/min
max. Vorlauftemperatur	90°C	90°C	90°C
Pumpen Primär	Grundfos UPM4 15-75 130	Grundfos UPMXL 25-125 180	Grundfos UPMXXL 25-120 180
Max. Leistung Pumpe	60 W	180 W	180 W
Rücklauftemperatur mitte min. bei Auslegungspunkt 1	40°C	40°C	40°C
Rücklauftemperatur unten max. bei Auslegungspunkt 1	20°C	20°C	20°C

Ab 120 l/min treten Geschwindigkeiten >2,5 m/s auf

2.2 AquaVip DTE/UFC Planer

Der AquaVip DTE/UFC Planer ist eine Webapplikation zur einfachen und schnellen Auslegung und Auswahl vom AquaVip-Durchfluss-Trinkwassererwärmer und AquaVip-Ultrafiltrationsmodul inklusive der Betrachtung einer optionalen Temperaturabsenkung. Die Voraussetzungen für die Auswahl und die Anbindung eines Energiespeichers können ebenfalls ermittelt werden.

https://av-dteufc-planer.viega.de

Bei höherer Wasserhärte sind Maßnahmen zur Wasserbehandlung notwendig

2.3 Empfohlene Rohrleitungslängen Heizungsseite

Für eine einwandfreie Funktion des Durchflusstrinkwassererwärmers (DTE) müssen die Rohrleitungsdimensionen zwischen dem Energiespeicher und dem DTE korrekt bemessen werden. Im Idealfall wird der DTE räumlich nah am Energiespeicher platziert.

Die Orientierungstabelle ist gültig für die Rohrsystem Prestabo, Temponox und Profipress. Eine detaillierte Auslegung, auch mit anderen Rohrsystemen, kann mit dem AquaVip DTE/UFC Planer erfolgen.

	DN		DTE 40			DTE 70			DTE 100	
		VL	RL1 RL2	Anzahl Bögen je Leitung	VL	RL1 RL2	Anzahl Bögen je Leitung	VL	RL1 RL2	Anzahl Bögen je Leitung
Max. mögliche Länge der	25	6 m	6 m	6	_	_	_	_	_	_
einzelnen Vor- (VL*) und	32	20 m	20 m	8	_	_	_	_	_	_
Rücklaufleitungen (RL1+2*) bei	40	_	_	_	10 m	10 m	6	5 m	5 m	5
Ausführung in Nennweite	50	_	_	_	40 m	40 m	12	25 m	25 m	9
Volumenstrom primär für Berechnung			2,44 m ³ /h	l		5,66 m ³ /h	1		7,02 m ³ /h	ì

VL = Vorlauf, RL1 = mittlerer Rücklauf, RL2 = unterer Rücklauf

Tab. 1: Max. Rohrleitungslängen Heizungsseite zwischen DTE und Energiespeicher

Der maximal zulässige Druckverlust bei primärem Nennvolumenstrom beträgt 150 hPa, aufgeteilt in 75 hPa im Vorlauf und 75 hPa im Rücklauf. Die Rücklaufleitungen in der Mitte und Unten identisch auslegen.

Annahmen: Bei den Berechnungen sind 10 mbar für Absperrungen oder ähnliches vorgesehen. Wenn weitere Bauteile mit zusätzlichem Druckverlust, wie Wärmemengenzähler verbaut werden, dann müssen diese besonders berücksichtigt werden.

3 Einsatzbereiche und Anlagengrößen

Viega empfiehlt für eine detailierte Planung den AquaVip DTE/UFC Planer, siehe "2.2 AquaVip DTE/UFC Planer" auf Seite 8.

Überschlägige Schnellauswahl des DTE*	DTE 40	DTE 70	DTE 100
Typische Anwendungsfälle und Einsatzbereiche beim max. Volumenstrom PWH bei 70/60/10 °C (Auslegungspunkt)	42 l/min	91 l/min	115 l/min
Wohnungen A Anzahl Standard-Wohnungen A (Enheitswohnung nach DIN 4708 mit 5820 kWh und Bedrafskennzahl N=1/Whg.) mit Gleichzeitigkeitsfaktor nach TU-Dresden**	bis 28	bis 170	bis 290
Wohnungen B Anzahl Standard-Wohnungen B (Enheitswohnung nach DIN 4708 mit 8730 kWh und Bedrafskennzahl N=1,5/Whg.) mit Gleichzeitigkeitsfaktor nach TU-Dresden	bis 19	bis 110	bis 190
Hotel A Anzahl Hotelzimmer mit Ausstattung A: Dusche & Waschtisch unter Verwendung Bedarf nach VDI6003, Komfortstufe 1	bis 13	bis 56	bis 89
Hotel B Anzahl Hotelzimmer mit Ausstattung B: Dusche & Waschtisch unter Verwendung Bedarf nach VDI6003, Komfortstufe 2	bis 9	bis 40	bis 64
Betreutes Wohnen Anzahl Zimmer für betreutes Wohnen/Seniorenheim: 1 Dusche & 1 Waschtisch pro Zimmer; unter Verwendung Bedarf nach VDI6003, Komfortstufe 2	bis 12	bis 100	bis 220
Bettenhaus im Krankenhaus Anzahl Zimmer für Bettenhaus im Krankenhaus: 1 Duschwanne & 1 Waschtisch pro Zimmer; unter Verwendung Bedarf nach VDI6003, Komfortstufe 2	bis 10	bis 44	bis 70
Sportstätten/Camping A Anzahl Duschen in Sportstätten/Camping bei angenommener Gleichzeitigkeit von max. 50 %; unter Verwendung Bedarf nach VDI6003, Komfortstufe 1	bis 18	bis 40	bis 51
Sportstätten/Camping B Anzahl Duschen in Sportstätten/Camping bei angenommener Gleichzeitigkeit von max. 70 %; unter Verwendung Bedarf nach VDI6003, Komfortstufe 1	bis 13	bis 29	bis 36

^{*} Detaillierte Auslegung muss zwingend erfolgen ** Detaillierte Information siehe Viega Planungswissen

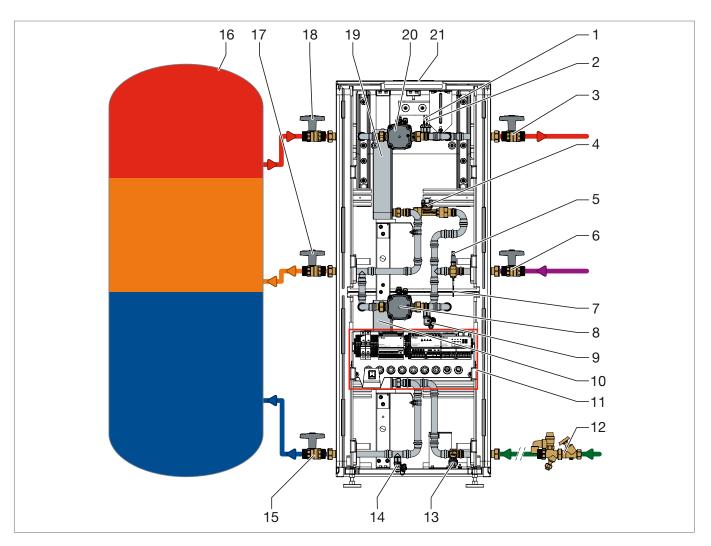
4 Benötigtes Zubehör

Die Komponenten sind im Lieferumang nicht enthalten und müssen gesondert bestellt werden.

Sicherheitsgruppe

Am Kaltwasseranschluss (PWC) muss eine Sicherheitsgruppe angeschlossen werden. Die Sicherheitsgruppe gesondert bestellen

HINWEIS! Zwischen Sicherheitsventil und AquaVip-Durchfluss-Trinkwasserewärmer dürfen keine Absperrugen verbaut sein.

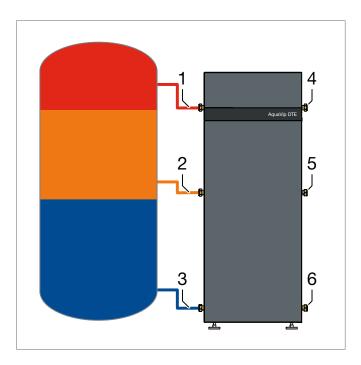

Kugelhähne

An der Primärseite müssen drei Kugelhähne angeschlossen werden. An der Sekundärseite müssen zwei Kugelhähne angeschlossen werden.

Es besteht die Möglichkeit Kugelhähne mit oder ohne Probenahmeventil zu verwenden. Die Anschlussgrößen gemäß Kapitel "2 Technische Daten" auf Seite 7 auswählen.

Produktbezeichnung	Modell	Abbildung
Easytop-Kugelhahn G- Gewinde, beidseitiger Entleerungsstopfen G¼ mit Entleerungsventil G¼	2275.1	
Easytop-Kugelhahn inkl. Probenahmeventil G- Gewinde, beidseitiger Entleerungsstopfen G¼ mit Entleerungsventil G¼	2275.6	
Easytop-Dämmschale	2275.90	

5 Baugruppenübersicht

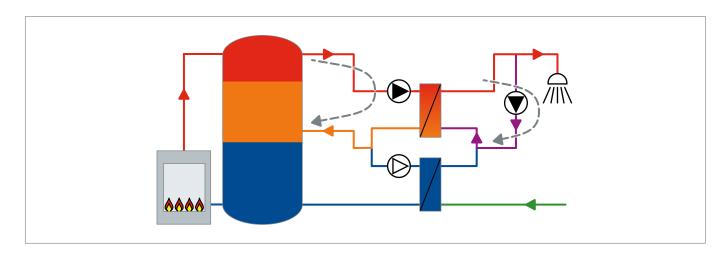

1	Temperatursensor (PWH)	12	Kaltwasserzulauf (PWC) mit Sicherheitsgruppe nach DIN 1988, bauseitig
2	Temperatursensor (VL)	13	Füll- und Entleerventil (Trinkwasserseite)
3	Trinkwasser warm (PWH) Kugelhahn, bauseitig (z. B. Modell 2275.6)	14	Füll- und Entleerventil (Heizungsseite)
4	Kombisensor Temperatur/Volumenstrom (PWH-C)	15	Unterer Rücklauf (RL Heizungsseite) Kugelhahn, bauseitig (z. B. Modell 2275.1)
5	Probenahmestelle	16	Energiespeicher, bauseitig
6	Zirkulationsleitung (PWH-C) Kugelhahn, bauseitig (z. B. Modell 2275.6)	17	Mittlerer Rücklauf (RL Heizungsseite) Kugelhahn, bauseitig (z. B. Modell 2275.1)
7	Temperatursensor (PWH-C)	18	Heizungsvorlauf (VL Heizungsseite) Kugelhahn, bauseitig (z. B. Modell 2275.1)
8	Primärpumpe	19	Plattenwärmeübertrager
9	Füll- und Entleerventil (Heizungsseite)	20	Primärpumpe
10	Plattenwärmeübertrager	21	LED-Anzeige
11	Elektrobox ■ AquaVip-Controller ■ AquaVip-DTE-Controller ■ Netzteil ■ An/Aus-Schalter		

6 Informationen zum Energiespeicher

- Separate Anschlüsse zum Energiespeicher, nur durch AquaVip-Durchfluss-Trinkwassererwärmer (DTE) belegt
- Heizungsseitige Rücklaufregelung für den gleichzeitigen Betrieb beider Heizungsrückläufe mit unterschiedlichen Temperaturen zur energieeffizienten Speicherschichtung
- Der Geräteaufbau sorgt ebenfalls für die Einhaltung der hygienischen Grundregel: Kalte Anschlüsse bleiben kalt und warme Anschlüsse warm.

Folgende Parameter bei der Auslegung des Energiespeichers beachten:

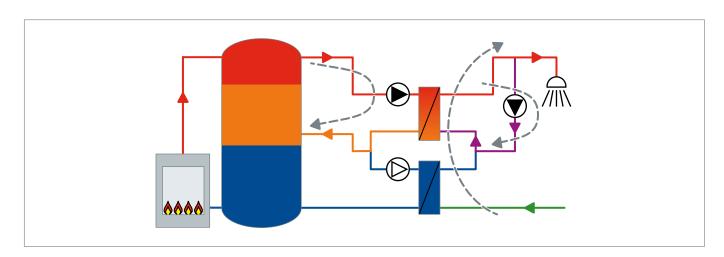
- Anlagengröße
- Anschlusshöhen
- Zirkulationsverluste
- Bedarfsvolumen
- Spitzenvolumen



1	Vorlauf Primär	4	PWH (heiß)
2	Mittlerer Rücklauf	5	PWH-C (warm)
3	Unterer Rücklauf	6	PWC (kalt)

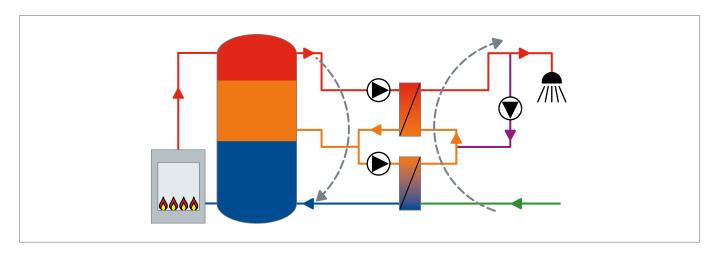
7 Betriebszustände

Durch den einzigartigen Aufbau des AquaVip-Durchfluss-Trinkwassererwärmers mit zwei Pumpen und zwei Wärmeübertragern in Reihe können die in der Praxis auftretenden Betriebszustände optimal bedient werden. Die Anforderungen an Speicherschichtung und Hygiene werden gleichermaßen erfüllt. Kalte Zonen bleiben kalt und es erfolgt eine gute Durchströmung.

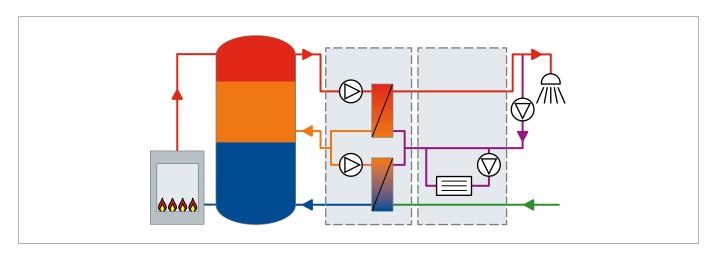

7.1 Zirkulationsbetrieb ohne Entnahme

Im oberen Plattenwärmeübertrager wird die Energie zum Ausgleich der Zirkulationsverluste übertragen. Da die Spreizung zwischen Trinkwasser warm und Zirkulation nach DVGW-Arbeitsblatt W553 5 K nicht überschreiten soll, liegt die Rücklauftemperatur des Heizwassers nahe der Temperatur der Zirkulation. Um die Schichtung im Energiespeicher nicht zu stören, wird dieser Rücklauf in die obere warme Hälfte des Energiespeichers eingespeist. So bleibt der untere Bereich des Energiespeichers kalt und optimiert die Effizienz des Wärmeerzeugers.

Der untere Plattenwärmeübertrager wird nicht durchströmt und bleibt kalt.


7.2 Zirkulationsbetrieb und kleine Entnahmen

Im oberen Plattenwärmeübertrager wird die Energie zum Ausgleich der Zirkulationsverluste und für die Bereitung von kleinen Entnahmen an Trinkwasser warm übertragen. Bis zu einer bestimmten Rücklauftemperatur sorgt die obere Pumpe für die Einspeisung des Heizungsrücklaufs in die obere warme Hälfte des Energiespeichers. So bleibt der untere Bereich des Energiespeichers kalt und optimiert die Effizienz von erneuerbaren Energien und Brennwerttechnologien.


Der untere Plattenwärmeübertrager wird mit Trinkwasser kalt durchströmt und bleibt kalt, da die untere Pumpe nicht in Betrieb ist.

7.3 Größere Entnahmen bis Volllast

Beide Plattenwärmeübertrager stellen die Energie für die Erwärmung von Trinkwasser zur Verfügung. Die jetzt untergeordnete Menge an Energie für die Zirkulation stellt der obere Plattenwärmeübertrager mit zur Verfügung. In Falle einer großen Entnahme schaltet sich die untere Pumpe dazu und sorgt für die Auskühlung des unteren Bereichs des Energiespeichers. Dadurch wird die Schichtung des Energiespeichers optimiert.

7.4 Kombination mit AquaVip-Ultrafiltrationsmodul (UFC) für abgesenkten Betrieb

Das optional zum DTE erhältliche und in der Warmwasser-Zirkulation integrierte AquaVip-Ultrafiltrationsmodul reduziert die Gesamtzahl an Bakterien und Nährstoffen im Trinkwasser warm – und sorgt so im Zusammenspiel mit AquaVip Solutions für einen hygienischen Anlagenbetrieb. Dies ermöglicht optional die Absenkung der Temperaturen in dem gesamten PWH-C System, wodurch sich die Energieeffizienz des Systems und somit die CO2-Bilanz verbessern lässt. Dies hat ebenfalls positive Auswirkungen auf den Einsatz verschiedener erneuerbarer Energien z.B. kann die Jahresarbeitszahl (JAZ) eines Wärmepumpensystems verbessert werden.

Nur auf Anfrage: Freischaltung zur Inbetriebnahme nur im Rahmen von wissenschaftlich begleiteten Pilotprojekten auf Basis der Viega UFC-Herstellerrichtlinie.

8 Diagramme

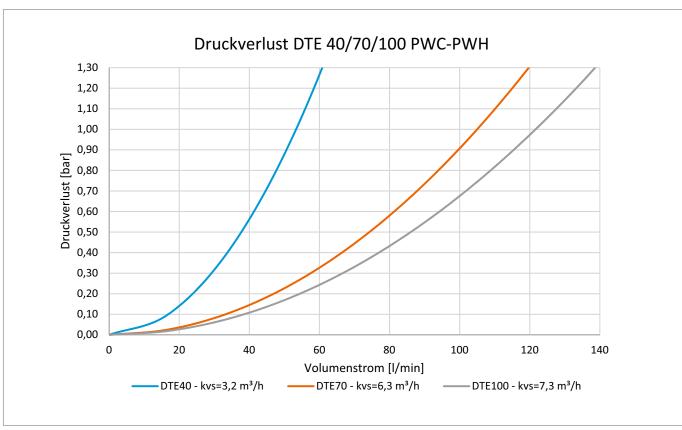


Abb. 4: Druckverlust Sekundär bei 60 °C

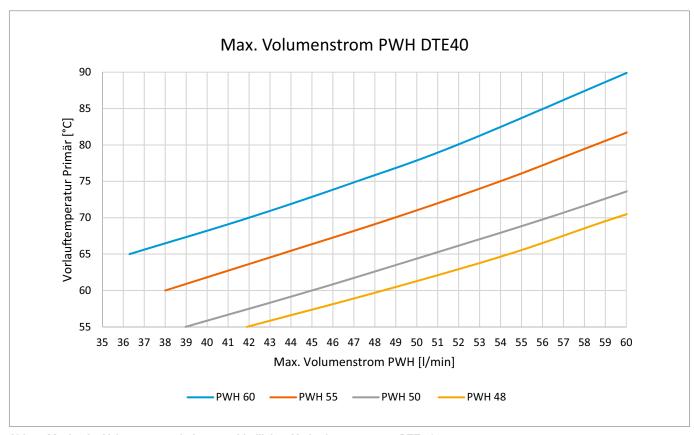


Abb. 5: Maximaler Volumenstrom bei unterschiedlichen Vorlauftemperaturen DTE 40

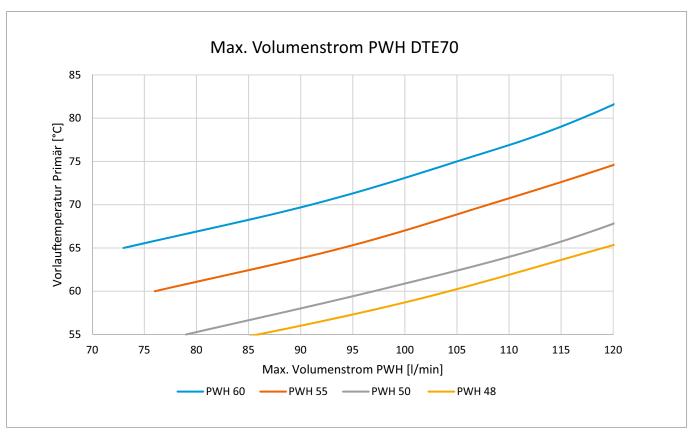


Abb. 6: Maximaler Volumenstrom bei unterschiedlichen Vorlauftemperaturen DTE 70

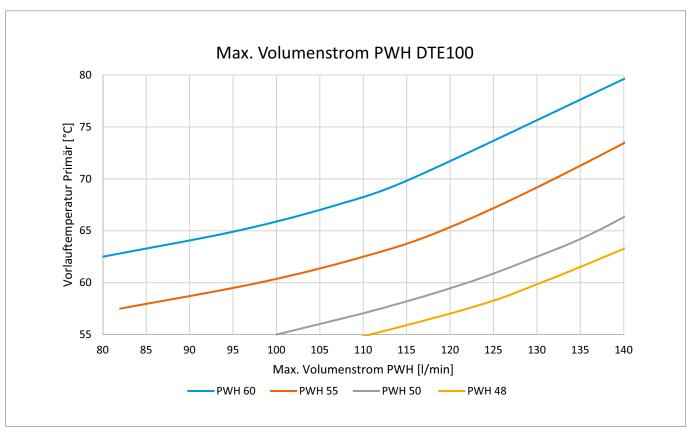


Abb. 7: Maximaler Volumenstrom bei unterschiedlichen Vorlauftemperaturen DTE 100

9 Platzbedarf und Abstände

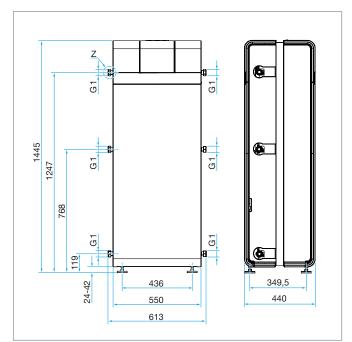


Abb. 8: Maßzeichnung DTE 40

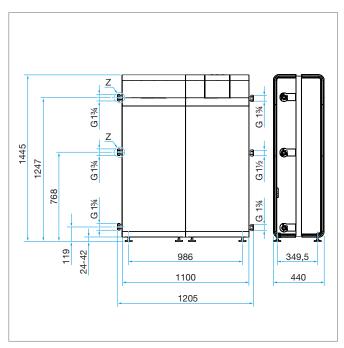


Abb. 9: Maßzeichnung DTE 70 / 100

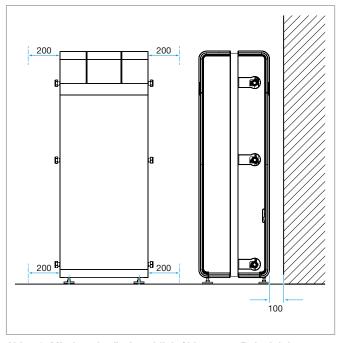


Abb. 10: Mindestabstände seitlich / hinten am Beispiel der DTE 40, gilt auch für DTE 70 / 100

Viega GmbH & Co. KG
Viega Platz 1

57439 Attendorn Deutschland

Telefon +49 (0) 2722 61 1100 Telefax +49 (0) 2722 61-1101 service-technik@viega.de

viega.de

